If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=544
We move all terms to the left:
x^2-(544)=0
a = 1; b = 0; c = -544;
Δ = b2-4ac
Δ = 02-4·1·(-544)
Δ = 2176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2176}=\sqrt{64*34}=\sqrt{64}*\sqrt{34}=8\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{34}}{2*1}=\frac{0-8\sqrt{34}}{2} =-\frac{8\sqrt{34}}{2} =-4\sqrt{34} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{34}}{2*1}=\frac{0+8\sqrt{34}}{2} =\frac{8\sqrt{34}}{2} =4\sqrt{34} $
| 2=2+r/3 | | 5t+7=57 | | w/4=17 | | 19n=152 | | -37=3(2p-7)+2p | | x-5)=22 | | 66x-15=8x-8 | | -b-b+5=-25 | | 4=-q-6/3 | | 4t+13=41 | | m/7=8.09 | | 2(5x+4)=10x+4 | | (7y-4)+(y-5)=28 | | 4+m/2=1 | | 3x=2x+33=180 | | 6x−48=−12 | | (44=6x-1+9x,-5 | | -16+r=3 | | 30-4x=-8(x+1)=18 | | 18+w/4=26 | | 20=a/11 | | (36x-14)=(25x-5x) | | X+3=11+x | | x+4x+(x-48)=726 | | A(6,-0.5y+20-0.5y=13) | | x+(x+3)+x=16 | | 3/4+2y+3/20=1 | | -55=x+(7) | | 10t-54=134 | | (7x-3-3x=13,1) | | (4,-12y+8y-21=-5 | | 9x^2-6.25=0 |